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ABSTRACT 

Simulations were conducted to compare the Kaplan-Meier survival function with the Shrunken Kaplan-
Meier survival function. Using the mean square error and pitman closeness criterion, the Shrunken Kaplan-Meier 
estimator is seem to perform better as compared to the Kaplan-Meier estimator especially for Weibull distribution 
and for a variety of censoring percentages. In case of exponential and log-logistic survival distributions, the results 
are less clear and not up to the mark. In addition, two variance estimators of Shrunken survival function are 
proposed. Simulation results show that Shrunken Kaplan-Meier survival function considerably perform better for 
the small samples. 
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INTRODUCTION 

Survival analysis deals with deaths in biological organism and failure in mechanical systems. It is also 
called the reliability analysis in engineering and duration modeling in economics or sociology 
(http://en.wikipedia.org/wiki/Survival_analysis). Generally, it involves the modeling of time to event data and is 
applicable in almost all the research disciplines like agriculture, plant and animal breeding experiments, medical 
sciences, statistical genetics, and crime analysis etc. for studying the time to failure of different organism and/or the 
reliability of different systems. In the present study, small and large sample performance of Kaplan-Meier and 
Shrunken Kaplan-Meier survival functions has been investigated; in addition, two new survival functions in the 
framework of Kaplan-Meier and Shrunken Kaplan-Meier survival functions are proposed. All these methods are 
defined in the following sections. 
 
MATERIALS AND METHODS 

Kaplan-Meier and Shrunken Kaplan-Meier Survival Functions 

Let x1, x2, …, xn be a sample of independent survival times with distribution function F(x). Let the 
censoring times c1, c2, …, cn be independently distributed according to G(c). The survival time's xi and censoring 
time's ci are assumed to be independent. 
Let Ti= min ( xi, ci) and Δi = I(xi ≤ ci) =1 if xi ≤ ci, and 0 otherwise. 
The Kaplan-Meier (1958) product limit estimator of S(x) = 1- F(x) is defined by 

^
( ) ( ) /

i

KM i i
t x

S x n e n
≤

= −∏ i
     (1) 

where ni is the number of individuals who are alive just before time ti and ei denotes the number of events at that 
time. 
The methods of Greenwood (1926) and Peto et al (1977) are most commonly used for estimating the variance of the 
Kaplan-Meier survival function, which are reproduced in equation (2) and (3), respectively;  
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and 
2^ˆ ˆ( ( )) ( )(1 ( )) /KMP KM KM iV S x S x S x n= −      (3) 

In case of moderate and heavy censoring, both of these estimators (as mentioned in equation (2 and 3) 
under estimate the true variance (Borkowf, 2005). To overcome this, Borkowf (2005) proposed a survival function 
under the framework of the Kaplan-Meier survival function and is called Shrunken Kaplan-Meier survival function. 
The Shrunken Kaplan-Meier survival function having n number of cases in the study is defined by the expression 
(4).  

( )
^

* ˆ( 1) /  ( ) 1/ 2KM KMS x n n S x= − + n      (4) 
For the problem of underestimation of variance, Borkowf introduced two new estimators; one is based on the 
Kaplan-Meier survival function and is defined as 

ˆ ˆ ˆ( ( )) ( )(1 ( )) / ( )KMH KM KM cV S x S x S x n cum= − −   (5) 

where,   is cumulative censoring. ccum
The other estimator, which he named an adjusted hybrid variance estimator, is defined as; 

* * *^ ^ ^
( ( )) ( )(1 ( )) / ( )KMH KM KMH cV S x S x S x n cum= − −    (6) 

 
Borkowf (2005) proved that these estimators performed better as compared to the Greenwood and Peto’s 

estimators. Borkowf in his study analysed only the variance estimators, while in this study, first we compare the two 
survival functions theoretically and then a simulation analysis is performed to make the decision on the basis of 
familiar mean square error and Pitman Closeness Criterion (Keating et al. 1993). We also propose two new variance 
estimators utilizing the method of Shrunken Kaplan-Meier survival functions. These estimators are compared with 
other variance estimators through extensive simulations by different sample scenarios. 

 
Comparison of Kaplan-Meier and Shrunken Kaplan-Meier Survival Functions 

By definition, Kaplan-Meier survival function is 

( )
^

( ) /
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and Shrunken Kaplan-Meier function can be expressed as 

( )
^

* ˆ( 1) ( ) /   1/ 2KM KMS x n S x n= − +  
We mainly use mostly the same notations as mentioned by Borkowf. 
We start from the zero time, since at this point no event has occurred, so ei = 0 and 

( )
^

00 / /KM i iS p n n n n= = = = ,  
and  

( )
^

* 0 ( 1) /   1/ 2 (2 1) / 2KMS n n n n= − + = − , where (2 1) / 2 1n n− <    

therefore,        (7) ( ) ( )00
^^

*
KMKM SS <

So, the starting value of Shrunken survival function is always less than 1. 
At the first observed time, there will be two possibilities, event or censoring. If the first observed time is censored 
then 

^ ^

1 1 0 1 1 1(1) (0)*( 0) / * 1* / 1KM KMS S n n p p n n= − = = =    (8) 
In case of no event at the first observed time 
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Similarly, 
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, so using equation (7) it is concluded that 

^ ^
*(1) (1)KMKMS S<        (10) 

If the first observed time is event, then 

( )
^ ^

1 1 1 0 1 1(1) (0)* / * 1* 1KMKMS S n e n p p p= − = =  

As , therefore,     (11) ( )1 1 1 1/p n e n= − <
^ ^

(1) (0)KMKMS S<
In the Shrunken method, 1/  is a constant factor, so the probability from one time to another time depends 

on . From equation (11), it can be written as; 

2n
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The Kaplan-Meier probability at time t1 is greater than the Shrunken Kaplan-Meier probability, if 
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In general, , if  ( ) ( )xSxS KMKM

^
*

^
<

1
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=

− + − <∏
Variance Estimators 
 We develop a new variance estimator of Shrunken Kaplan-Meier survival function by using the variance property 
on equation (4), we get 

( ) (
*^ ^2( ) ( 1) /KM KMV S x n n V S x

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠

    (13) 

If we use the Greenwood variance formula, then the new estimator is  
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In case of Peto’s variance i.e.  

 ( ) ( )(
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   (15) 

For large “n” these two variances reduce to the Greenwood’s and Peto’s variance respectively. 
Comparison of the two New Variances with Greenwood’s and Peto’s Variance 
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Variance is smaller than the Greenwood’s variance.  
The new variance based on Peto’s formula, 

( ) ( ) ( )* 2 2 2ˆ ˆ ˆ( ) (( 1) / ) ( ) 1 ( ) / (( 1) / ) ( )P KM KM KM i P KMV S x n n S x S x n n n V S x= − − = − ˆ
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This shows that 

( ) (*ˆ ˆ( ) ( )P KM P KMV S x V S x<        (19) 

If the data is free from censoring, the Greenwood’s variance is reduced to a binomial variance, i.e. 

( ) ( ) ( )1
ˆ ˆ ˆ ˆ( ) ( ) 1 ( ) / ( )G KM KM KM B KMV S x S x S x n V S x= − =   
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)
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)

)
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  which shows that the proposed variance is less than the 

binomial variance i.e.  

( ) (*ˆ ˆ( ) ( )G KM B KMV S x V S x<      (20) 

Comparison of Proposed Variances with the Variances Proposed by Borkowf 
As Borkowf showed that  

( ) (ˆ ˆ( ) ( )KMH G KMV S x V S x>      (21) 

and      (22) ( ) (ˆ ˆ( ) ( )KMH P KMV S x V S x>

Similarly,       (23) ( ) (*ˆ ˆ( ) ( )KMH G KMV S x V S x>

( ) (*ˆ ˆ( ) ( )KMH P KMV S x V S x⇒ >     (24) 

 
By comparing this, it is concluded that the proposed variances may always give the smaller values as 

compared to the aforementioned four existing methods. So, we do not consider it for the analysis. It is proved both 
by the simulation and by the practical application that the adjusted hybrid variance estimator is the best choice in 
case of moderate to heavy censoring. As the new variance estimator is less than in every situation, so we do not 
apply it on the real data set. 

 
RESULTS AND DISCUSSION 

Monte Carlo simulations were conducted to compare the efficiency of the aforementioned methodologies. 
A uniform density U(0, b) for the censoring distribution while adjusting parameter “b” to provide 15%, 30%, 45%, 
60% and 75% censoring was used to achieve this objective. For survival distributions, the exponential, weibull and 
log-logistic distributions were selected. For comparison, we decided to choose points of the form ( )jx dF 1−  with 
fixed di’s (d1= 0.1, d3 = 0.3, d5 = 0.5, d7 = 0.7, d9 = 0.9). We generated 500 data sets of survival times with various 
sample sizes (n = 35, 70, 140, 280). To make the phenomena random, instead of using the subjective approach for 
selection of sample size, a different approach following three different steps was adopted. In the first step, a sample 
from 30 to 50 units (in order to select a small sample) was selected, replicated twice and then replicated the units 
obtained from the 2nd step to enter in the third step. At last, the units of 3rd steps were further replicated two times to 
achieve a larger sample size. By doing this, a sample of size 35 was randomly generated and following the steps a 
sample of size 280 was obtained. In addition, to compare the aforementioned methods the censoring times from the 
uniform distribution were generated for each of the survival time data sets. These data sets will built our confidence 
to draw conclusions about the choice of selecting better estimator for both the small and large data sets at uniform 
conditions.   
 

 



Sarhad J. Agric. Vol.25, No.4, 2009                                                                                                                          675 
 

With the usual logic of survival time and censoring time, we got the required times. For each data set, the 
mean square errors of the Kaplan-Meier as well as of the Shrunken Kaplan-Meier survival functions were computed. 
Similarly, probabilities were computed for the pitman closeness criterion. To check whether these two methods 
reach the same conclusion, we combined all these results (Table I). Here, the results for n = 140 are not mentioned 
as it almost yield the same results as n = 280, although these results are provided Figure 1 and 2.  

 
Table I shows that the decision on basis of the ratio of mean square error and that of Pitman Closeness 

Criterion do agree at most of the points.  Pitman closeness criterion is more useful in a situation, when the mean 
square errors of both estimators are equal to zero. In this case, if it is desired to choose the best estimator at that 
point, then the Pitman closeness criterion is helpful. In case of heavy censoring, which is usually the case in reality, 
and yield zeros mean square errors for the lower deciles. Table I indicates that Weibull survival distribution gives 
more satisfactory results for all samples sizes, while the other two distributions give mixed results for large sample 
sizes. In our simulation study, in all situations, Pitman’s criteria give the decision in favour of new estimator. 

 
Table I  Ratio of the mean square errors of Kaplan-Meier and Shrunken Kaplan-Meier estimators, Pitman closeness 

criterion based on 500 samples of size n  
d.1 d.3 d.5 d.7 d.9  Dist. of 

survivor 
 Dist of 
Censoring 

 
% 

n 
R.MSE Pcc R.MSE Pcc R.MSE Pcc R.MSE Pcc R.MSE Pcc 

35 1.016 0.516 0.957 0.480 0.951 0.890 0.953 0.486 0.975 0.486 
70 1.006 0.480 0.981 0.494 0.972 0.912 0.973 0.498 1.000 0.490 

U(0,6.5) 
   

15 
 

280 0.998 0.512 0.993 0.486 0.993 0.956 0.994 0.508 0.993 0.514 
35 1.111 0.584 0.951 0.504 0.944 0.882 0.954 0.510 1.027 0.440 
70 1.047 0.496 0.977 0.480 0.972 0.912 0.976 0.476 0.997 0.488 

 
U(0,3.2) 
 \  

30 
 
 280 1.005 0.456 0.997 0.470 0.997 0.968 0.995 0.492 1.000 0.492 

35 0/0 1.000 0.962 0.498 0.944 0.896 0.952 0.498 1.021 0.462 
70 0/0 1.000 0.974 0.506 0.971 0.942 0.976 0.478 0.995 0.490 

U(0, 1.8) 
  
  

45 
 
 280 0/0 1.000 0.994 0.498 0.993 0.968 0.993 0.478 1.003 0.460 

35 0/0 1.000 0/0 1.000 0.943 0.942 0.951 0.534 1.024 0.454 
70 0/0 1.000 0/0 1.000 0.972 0.942 0.976 0.498 0.999 0.496 

U(0,1.1) 
  
  

60 
 
 280 0/0 1.000 0/0 1.000 0.993 0.972 0.995 0.518 0.999 0.490 

35 0/0 1.000 0/0 1.000 0/0 1.000 0.952 0.542 1.020 0.472 
70 0/0 1.000 0/0 1.000 0/0 1.000 0.976 0.470 0.995 0.512 

E(1) 
  
  
  
  
  
  
  
  
  
  

U(0, 0.6) 
  
  

75 
 
 280 0/0 1.000 0/0 1.000 0/0 1.000 0.995 0.504 0.997 0.502 

35 1.021 0.528 0.953 0.500 0.951 0.896 0.955 0.518 0.984 0.468 
70 1.007 0.498 0.976 0.496 0.971 0.912 0.978 0.494 0.999 0.454 

U(0,12) 
  
  

15 
 
 280 1.003 0.490 0.998 0.462 0.993 0.948 0.995 0.522 0.996 0.526 

35 1.096 0.610 0.951 0.504 0.944 0.886 0.952 0.510 1.027 0.432 
70 1.051 0.506 0.978 0.496 0.972 0.912 0.976 0.496 0.996 0.486 

U(0, 6) 
  
  

30 
 
 280 1.001 0.472 0.998 0.478 0.993 0.964 0.995 0.502 0.998 0.504 

35 0/0 1.000 0.966 0.482 0.944 0.918 0.944 0.520 0.972 0.502 
70 0/0 1.000 0.972 0.498 0.972 0.924 0.975 0.514 0.984 0.502 

U(0, 3.5) 
  
  

45 
 
 280 0/0 1.000 0.991 0.522 0.993 0.970 0.996 0.428 1.005 0.474 

35 0/0 1.000 0/0 1.000 0.944 0.936 0.944 0.534 0.996 0.486 
70 0/0 1.000 0/0 1.000 0.972 0.936 0.970 0.538 0.970 0.528 

U(0, 2.2) 
  
  

60 
 
 280 0/0 1.000 0/0 1.000 0.993 0.978 0.995 0.508 0.993 0.520 

35 0/0 1.000 0/0 1.000 0/0 1.000 0.955 0.530 1.018 0.462 
70 0/0 1.000 0/0 1.000 0/0 1.000 0.976 0.478 0.997 0.500 

E(0.5) 
  
  
  
  

U(0, 1.3) 
  
  

75 
 
 280 0/0 1.000 0/0 1.000 0/0 1.000 0.994 0.512 0.997 0.502 
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35 1.021 0.528 0.953 0.500 0.951 0.896 0.955 0.518 0.984 0.468 
70 1.007 0.498 0.976 0.496 0.971 0.912 0.978 0.494 0.999 0.454 

U(0, 4) 
  
  

15 
 
 280 1.003 0.490 0.998 0.462 0.993 0.948 0.995 0.522 0.996 0.526 

35 1.109 0.594 0.950 0.500 0.945 0.890 0.953 0.516 1.026 0.438 
70 1.050 0.486 0.977 0.484 0.972 0.930 0.976 0.476 0.995 0.486 

U(0, 2.1) 
  
  

30 
 
 280 1.004 0.466 0.998 0.472 0.993 0.978 0.995 0.498 0.999 0.500 

35 0/0 1.000 0.966 0.484 0.944 0.912 0.945 0.510 0.971 0.512 
70 0/0 1.000 0.972 0.492 0.972 0.924 0.975 0.516 0.982 0.506 

U(0,1.2) 
  
  

45 
 
 280 0/0 1.000 0.990 0.534 0.993 0.966 0.996 0.438 1.006 0.476 

35 0/0 1.000 0/0 1.000 0.944 0.920 0.944 0.502 0.989 0.486 
70 0/0 1.000 0/0 1.000 0.972 0.952 0.969 0.540 0.973 0.528 

U(0, 0.8) 
  
  

60 
 
 280 0/0 1.000 0/0 1.000 0.993 0.962 0.995 0.514 0.993 0.510 

35 0/0 1.000 0/0 1.000 0/0 1.000 0.946 0.540 0.966 0.504 
70 0/0 1.000 0/0 1.000 0/0 1.000 0.976 0.490 1.002 0.460 

E(1.5) 
  
  
  
  

U(0, 0.4) 
  
  

75 
 
 280 0/0 1.000 0/0 1.000 0/0 1.000 0.993 0.502 1.007 0.448 

35 0/0 1.000 0.914 1.000 0.948 0.996 0.886 0.822 0.779 0.988 
70 0/0 1.000 0.947 1.000 0.970 0.996 0.921 0.910 0.862 1.000 

U(0, 3.2) 
  
  

15 
 
 280 0/0 1.000 0.987 1.000 0.993 1.000 0.976 0.998 0.959 1.000 

35 0/0 1.000 1.000 0.996 0.940 0.982 0.878 0.836 0.761 0.986 
70 0/0 1.000 0.996 1.000 0.970 0.998 0.923 0.900 0.855 1.000 

U(0, 1.6) 
  
  

30 
 
 280 0/0 1.000 0.988 1.000 0.993 1.000 0.976 0.998 0.959 1.000 

35 0/0 1.000 0/0 1.000 0.940 0.980 0.876 0.802 0.747 0.988 
70 0/0 1.000 0/0 1.000 0.971 0.996 0.923 0.904 0.855 1.000 

U(0, 0.9) 
  
  

45 
 
 280 0/0 1.000 0/0 1.000 0.993 0.998 0.976 0.996 0.959 1.000 

35 0/0 1.000 0/0 1.000 0.978 0.992 0.876 0.824 0.747 0.992 
70 0/0 1.000 0/0 1.000 0.977 0.992 0.923 0.910 0.853 0.998 

U(0, 0.55) 
  
  

60 
 
 280 0/0 1.000 0/0 1.000 0.993 1.000 0.976 0.994 0.958 1.000 

35 0/0 1.000 0/0 1.000 0/0 1.000 0.883 0.788 0.743 0.988 
70 0/0 1.000 0/0 1.000 0/0 1.000 0.927 0.882 0.850 1.000 

W(1, 
0.5) 
  
  
  

U(0, 0.33) 
  
  

75 
 
 280 0/0 1.000 0/0 1.000 0/0 1.000 0.976 0.994 0.958 1.000 

35 1.038 0.014 1.004 0.270 0.962 0.902 0.914 0.648 1.133 0.230 
70 1.023 0.000 1.004 0.222 0.976 0.960 0.938 0.674 1.118 0.206 

U(0,10) 
  
  

15 
 
 280 1.006 0.000 1.001 0.158 0.993 1.000 0.970 0.732 1.052 0.022 

35 1.038 0.024 1.001 0.308 0.956 0.900 0.910 0.624 1.114 0.254 
70 1.024 0.000 1.004 0.234 0.976 0.952 0.945 0.628 1.117 0.148 

U(0, 4.7) 
  
  

30 
 
 280 1.006 0.000 1.001 0.150 0.993 1.000 0.969 0.730 1.051 0.012 

35 1.030 0.072 0.999 0.358 0.955 0.888 0.905 0.650 1.109 0.306 
70 1.020 0.014 1.002 0.270 0.975 0.958 0.945 0.650 1.114 0.166 

U(0, 2.8) 
  
  

45 
 
 280 1.006 0.000 1.001 0.150 0.993 1.000 0.973 0.686 1.050 0.032 

35 0/0 1.000 0.994 0.432 0.953 0.928 0.912 0.608 1.130 0.286 
70 0/0 1.000 1.001 0.308 0.975 0.962 0.951 0.586 1.114 0.158 

U(0, 1.7) 
  
  

60 
 
 280 0/0 1.000 1.001 0.186 0.993 0.998 0.972 0.756 1.051 0.038 

35 0/0 1.000 0/0 1.000 0.966 0.960 0.919 0.602 1.102 0.294 
70 0/0 1.000 0/0 1.000 0.976 0.968 0.957 0.576 1.093 0.224 

U(0, 0.9) 
  
  

75 
 
 280 0/0 1.000 0/0 1.000 0.993 0.996 0.977 0.688 1.047 0.032 

35 1.087 0.542 0.940 0.524 0.944 0.900 0.950 0.498 0.979 0.496 
70 1.031 0.488 0.980 0.478 0.972 0.918 0.979 0.464 0.996 0.494 

W(1, 
1.5) 

U(0, 18) 
  
  

15 
 
 280 1.010 0.462 0.994 0.488 0.993 0.956 0.995 0.508 0.995 0.512 
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35 0/0 1.000 0.956 0.494 0.944 0.888 0.952 0.504 1.011 0.448 
70 0/0 1.000 0.971 0.518 0.972 0.920 0.976 0.492 1.005 0.484 

U(0, 6.3) 
  
  

30 
 
 280 0/0 1.000 0.994 0.480 0.993 0.970 0.994 0.514 0.993 0.512 

35 0/0 1.000 0.982 0.510 0.943 0.910 0.948 0.520 0.995 0.482 
70 0/0 1.000 0.977 0.492 0.972 0.936 0.975 0.488 1.000 0.478 

U(0,3) 
  

45 
 

280 0/0 1.000 0.993 0.504 0.993 0.966 0.994 0.486 0.996 0.528 
35 0/0 1.000 0/0 1.000 0.946 0.954 0.950 0.524 0.982 0.472 
70 0/0 1.000 0/0 1.000 0.972 0.976 0.976 0.494 0.992 0.494 

U(0, 1.5) 
  

60 
 

280 0/0 1.000 0/0 1.000 0.993 0.974 0.994 0.492 0.996 0.504 
35 0/0 1.000 0/0 1.000 0/0 1.000 0.954 0.518 1.016 0.492 
70 0/0 1.000 0/0 1.000 0/0 1.000 0.976 0.474 1.007 0.462 

U(0, 0.8) 
  

75 
 
 280 0/0 1.000 0/0 1.000 0/0 1.000 0.993 0.524 0.994 0.508 

35 0/0 1.000 0.948 0.518 0.950 0.924 0.958 0.492 0.997 0.474 
70 0/0 1.000 0.972 0.502 0.972 0.908 0.971 0.498 1.005 0.458 

Logl (1,  
1) 
  
  

U(0. 70) 
  
  

15 
 
 280 0/0 1.000 0.997 0.460 0.993 0.952 0.995 0.484 1.005 0.470 

35 0/0 1.000 0.952 0.500 0.945 0.900 0.939 0.524 0.937 0.498 
70 0/0 1.000 0.981 0.474 0.972 0.932 0.967 0.522 0.979 0.518 

U(0,16) 
  
  

30 
 
 280 0/0 1.000 0.993 0.514 0.993 0.952 0.993 0.492 1.000 0.506 

35 0/0 1.000 0/0 1.000 0.944 0.916 0.948 0.518 0.998 0.476 
70 0/0 1.000 0/0 1.000 0.972 0.946 0.973 0.474 0.990 0.514 

U(0,4) 
  
  

45 
 
 280 0/0 1.000 0/0 1.000 0.993 0.966 0.992 0.532 0.990 0.498 

35 0/0 1.000 0/0 1.000 0.966 0.982 0.960 0.482 1.011 0.434 
70 0/0 1.000 0/0 1.000 0.976 0.976 0.973 0.490 0.985 0.470 

U(0, 1.2) 
  
  

60 
 
 280 0/0 1.000 0/0 1.000 0.993 0.990 0.997 0.444 1.002 0.486 

35 0/0 1.000 0/0 1.000 0/0 1.000 0.946 0.532 0.987 0.472 
70 0/0 1.000 0/0 1.000 0/0 1.000 0.967 0.550 0.983 0.494 

U(0, 0.3) 
  
  

75 
 
 280 0/0 1.000 0/0 1.000 0/0 1.000 0.992 0.502 0.991 0.518 

35 1.056 0.484 0.943 0.522 0.943 0.900 0.950 0.500 0.997 0.446 
70 0.977 0.524 0.973 0.508 0.972 0.918 0.969 0.544 0.992 0.494 

 Logl(1, 
0.5) 
  
  
  

U(0, 12.5) 
  
  

15 
 
 280 1.003 0.480 1.000 0.472 0.993 0.954 0.993 0.510 0.993 0.496 

35 1.104 0.724 0.955 0.502 0.942 0.886 0.940 0.486 0.988 0.468 
70 1.070 0.628 0.968 0.500 0.971 0.926 0.968 0.492 0.988 0.456 

U(0, 5) 
  
  

30 
 
 280 1.005 0.502 0.995 0.468 0.993 0.964 0.994 0.532 0.997 0.508 

35 0/0 1.000 0.964 0.496 0.944 0.900 0.949 0.548 0.981 0.490 
70 0/0 1.000 0.979 0.452 0.972 0.920 0.980 0.510 0.965 0.530 

U(0, 2.9) 
  
  

45 
 
 280 0/0 1.000 0.991 0.512 0.993 0.950 0.995 0.502 1.000 0.490 

35 0/0 1.000 0/0 1.000 0.943 0.928 0.949 0.532 0.967 0.514 
70 0/0 1.000 0/0 1.000 0.971 0.930 0.980 0.486 1.009 0.466 

U(0, 1.7) 
  
  

60 
 
 280 0/0 1.000 0/0 1.000 0.993 0.958 0.995 0.496 0.999 0.470 

35 0/0 1.000 0/0 1.000 0/0 1.000 0.946 0.570 0.987 0.482 
70 0/0 1.000 0/0 1.000 0/0 1.000 0.972 0.512 1.001 0.472 

 Logl(1, 
1.5) 
  
  

U(0, 1) 
  
  

75 
 
 280 0/0 1.000 0/0 1.000 0/0 1.000 0.993 0.482 1.002 0.476 

R.MSE = Ratio of mean square errors; Pcc= Pitman Closeness Criterion; d1, d3, d5, d7 and d9 are the deciles  
 

Figure 1 and 2 represent the Pitman closeness criterion and mean square error curves of the two estimators, 
at d1, d2, d3, d4, d5, d6, d7, d8 and d9, for the case where the samples of size n= 35, 70, 140 and 280 respectively, come 
from W(1, 0.5) and censoring is uniform. By comparing these results (Fig 1 and 2) , it is evident that the mean 
square error gives a clearer picture and reveals that the proposed method is better than the traditional method for 
small sample size couple with moderate to heavy censoring. While in case of large sample size, it behaves like the 
Kaplan-Meier survival function. 
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Fig. 1   Curves of Pitman closeness criterion from Weibull survival distribution and uniform censoring distribution, 

with censoring percentages and sample size n 
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Fig. 2.  Solid curve represents the Mean Square errors of Kaplan-Meier survival function and dotted curve 

represents the Mean Square errors of the Shrunken Kaplan-Meier survival function 
 
CONCLUSION AND RECOMMENDATION 

Our results extend the results of earlier study. Our simulations were considerably more ambitious. We used 
four sample sizes, three survival distributions and four levels of censoring. Our results demonstrated that Shrunken 
Kaplan-Meier estimators generally performed better for small samples. If the data follow the Weibull distribution, 
then the results are more in favour of the Shrunken Kaplan-Meier survival function, but it gives mixed results if we 
use the exponential or log-logistic distribution, especially for large sample size, which may be due to the fact that the 
Shrunken Kaplan-Meier survival function is more suitable for the small samples. 
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